SLEWING MOBILE CRANE (100T) SAFETY AND LICENCE GUIDE

Training support material for:

TLILIC0021 Licence to operate a slewing mobile crane (up to 100 tonnes)

Produced by:

Contents

Introduction to Slewing Mobile Crane (up to 100 tonne	es)5.	
High Risk Licensing and the Law		
Element 1 – Plan work / task		
Element 2 – Prepare for work / task		
Reading Load Chart – for cranes up to 100 tonnes		
Element 3 – Perform work / task		
Element 4 – Pack up		
Additional Review Questions		

Introduction to Slewing Mobile Crane (up to 100 tonnes)

What is a slewing mobile crane

A slewing mobile crane is a powered crane which features a boom or jib that can slew from front to back. The crane is mounted on a vehicle.

This learner resource does not cover front-end loader, backhoe, excavator or similar equipment when configured (arranged or set up) for crane operations.

INTRODUCTION TO SLEWING MOBILE CRANE (up to 100 tonnes)

Element 1 – Plan work / task

PC 1.1

ELEMENT 1 - PLAN WORK/TASK

What is a lift plan?

A lift plan is a document that outlines the size of a load, weight, dimensions, center of gravity, resources needed for lift, sling equipment list and a hazard risk assessment. The following is a sample template of a lift plan.

lift	Plan
	rian

	_						_			-	5.%	Sketc	:h																					100	1
1. Project Details					Ver	sion No:				+	For	one o	of yo	ur lift	is you	will n	need t	to ski	etch t	the e	nvire	onm	ent a	ind a	ny o	bsta	cles	pres	ent.						
Candidate Name:					Site	Pick up ress:					Sket	tch oi	ne lo	ad ar	nd sho	w the	e follo	owinį	g:																2
Operator Contact					Site	Drop off					1. C	rane	stan	ding	positio	on																	K	N	2
Details / Supervise	or				Ado	ress:				1	2. St	tabili	ser le	ocatio	on																		7	1	1
Crane make /					Cra	ne ID					3. Lo	bad lo	ocati	on					مان														Stor A		4 7
model										+	4. SI	now i	uista	loc	and ic	au m	loven	nent-	direc	uon													2 1	FT PLAN	au I
Lift 1 Description										4	J. A	illy OL	Jacat	163																				2	N.
Lift 2 Description	_									+	Π	TT	П		TT	П	И	П	П	П	Π	Т			T	П	Т	П	Π	Γ	ÍΤ	TT		8 8	SY
Lift 4 Description										+	H																		Ħ				- 4		-
Lift 4 Description		if+ 1	1	13	4 2		1:6+ 2		1:64 /	+	H												7			T			r						
Weight of Load		.iit I	-		Ka		Lift 3		LIIL 4	-													/					W.					1		
Weight of rigging		Kg			Kg	-	Kg		Ka	-																							1		
Weight of books		Ka	-		Ka		Ka		Ka	-				4								1												910	
Additional		Ke	-		Ka		Ka		Ka	-											P.				IΤ				LΤ			ΙT	_		-
Weight		кg			r'R		ъg		r g				4												IΤ				LΤ			ΙT			
Total*		Kσ	-	-	Κσ		Kσ		Ka	1	Ц						\square				ιĪ	NT.		Ц	ЦГ	ΗĪ			ЦГ			ЦĽ			
Boom Length		M	-		M		M		M	1																\square			\square				_		
Boom sequence		1		-			1.555			1	Щ	1													\square	\square		\square				\square	4		
Line pull		Ton	ne		Tonne		Tonne /		Tonne	-	\square										++												_		
cirie pui		/ kg			/ kg		kg		/ kg								\square																_		
Parts of line		M			M		M		M								\parallel				Ť												_		
Hook block WH		Ton	ne		Tonne		Tonne /		Tonne	-			1				++	++			+					+			++				_		
		/ kg			/ kg		kg		/ kg		\vdash							++			++				++				+				_		
Pick up radius		M			M		M		M		+	++							r –						++	+	-		+				_		
Set down radius		М			М		М		M		H.		+					1			++				++				++				_		
Max radius		М			М		М		M	-											++				++				++				_		
RC at Max radius		Kg			Kg		Kg		Kg		H						-				++				++								-		
Communication Method	H 2	WR	w	H 2	WR W	н	2WR W	H 2	2WR W																								-		
* Operator to	I									1		++			++		++	++			++	++			++				++				-		
Calculate / Sling																		++							++				++				-		
Calculation											H			4+							++				++								-		
2. Equipment for										1											++				++								-		
load lift / sling									<u> </u>	1	H																						-		
Dogger/Assessor											H						t t																-		
initial											7															T							-		
3.* Sling Calculation	on Notes	5:								-	H															T							-		
						>					H															T							-		
																																	1		
																																	1		
																																	1		
A A Rick Contrala	Soo ad-1:	tional	noto t	molati					7	+											\square		Τ							Τ					
4." RISK CONTROLS:	see addi	uonali	iote ti	emplate																IT	IT				IΤ				LΤ			ΙT			
								Ŧ			LT						LΤ			L	ΗT				LΤ				LΤ			LT			
											Ш																								
											Ш																								
											Щ		\square	\square			\square				+	4			\square	\square		\square				\square	4		
										1																			1						

PC 1.2

ELEMENT 1 - PLAN WORK/TASK

Outriggers and packing (continued)

The top layer of packing must be at right angles to the direction of the outrigger beam and at least 200 mm wide.

The packing should be pigstyed. This means each layer is at right angles (90° degrees) to the next.

Packing, outriggers and jacks should be checked regularly during an operation.

Why you need packing

You **must** use packing under the outriggers. Each outrigger takes some of the weight of the crane and the load. Packing spreads that weight over a larger area. You must work out the minimum area of packing needed under each outrigger. This will keep the crane stable.

How soil types affect packing

The type of ground you are working on changes how much packing you need.

For example, if you need to set up on soft clay you will need more packing than if you are setting up on shale or rock. The three best ground types are hard rock, shale or sandstone, and compacted gravel with up to 20% sand.

PC 1.2

ELEMENT 1 - PLAN WORK/TASK

Packing formula

To calculate the area of packing needed in square metres you must know:

- The cranes mass (Cm)
- The loads mass (L)
- The bearing pressure of the soil (PMAX).

Element 2 – Prepare for work / task

ELEMENT 2 - PREPARE FOR WORK/TASK

Risk assessment – Used to identify hazards

PC 2.2

Shown here is an example of a risk assessment and control form.

You can use it at your workplace to help with risk management.

You can find out more about risk management in codes of practice available from –

Safe Work Australia www.safeworkaustralia.gov.au

or from your state or territory regulator.

	Examp	le of a Risk	Assessment	t and Contro	I Form							
Workplace area	or grouping:		R	eference no:								
Form completed	l by:		Di	Date form completed:								
Signature:												
		Haz	ard Identifica	tion	7							
Hazard:												
Associated risk:												
Specific circums	stances relating to	o the risk:										
Persons at risk:												
		Ri	sk Assessme	nt								
Existing control I	measures (if any):			_	_							
Likelihood:	Almost cer	tain 🛛 Likel	y Possib	ole 🛛 Un	likely 🛛 R	are						
Consequences:	Catastroph	ic 🗌 Majo	r 🗋 Moder	rate 🗌 Mi	nor 🗆 Ir	significant						
			Risk Control									
Possible control	options:											
Elimination:												
Substitution, Iso	lation or Enginee	ring:										
Administrative of	r Personal Protec	tive Equipment:										
Preferred contro	ol options (and wh	ıy):										
		Imp	ementation I	Plan								
Control ontion	Accord	Basauraaa	Demon(a)	Proposed	Side off and	Sabadulad						
Control option	activities	required	responsible	implementation date	date	review date						
			Deview			I						
Ave equiting in				a at a								
Are control m	easures in plac	er 🗆 tes		iy not?								
Are controls p minimising th	reventing or e risk?	□ Yes	□ _{No} Wr	ny not?								
Are there any	new problems	□ _{Yes}	🗆 No Wł	nat are they?								

PC 2.2

Hazard - Too dark

You must be able to see clearly. Ask your boss to have the area properly lit up. They may need to set up temporary lighting while you work.

Hazard

If the work area is dark or dimly lit you might not be able to see clearly.

Control

Use extra lighting such as portable lamps, or try to find a brighter area if you can.

PC 1.5, 2.2

ELEMENT 2 - PREPARE FOR WORK/TASK

Methods of not endangering ones self while slinging a load

To prevent harm on one's self and others, you would need to identify hazards and use appropriate risk controls while slinging a load.

Hazards that can be found with slinging a load can be;

Sling hazard 1. Sharp edges on load, o-

Sling hazard 2. Wear and tear on sling equipment,

Sling hazard 3. Load In-balance,

Sling hazard 4. Incorrect use of equipment that makes up sling configuration $_{
m O-}$

Sling Hazard 5. WLL. – Incorrect reading of working load limits and calculations of load to become unstable or drop load.

A risk assessment for slinging a load.

Company Details: Easy Guides Australia (EGA Earchworks - 19 Chandler Road, Boronia Vic 3155) Date: 12/12/ Contact:

Work Description: Lift a load, concrete drainage 12 meters long, 4.5 tones in mass, using a web sling with a spreader beam and basket hitch.

Hazard Item	Likelihood / Risk Level	Consequences / Likelihood	Control options or protection measures	1. Elimination	2. Substation	3. Administrative	4. preferred control options	5 use ppe
1	1 = low	Could - Cause load to fall	Use protective material around sling to prevent break and damage to sling	Yes	Yes	Yes – have an equipment checklist	See notes	N/A
2	1 = low	Possible – Could cause sling to fail or break	Use protective equipment when sling and store in a safe environment.	Yes	Yes	Check equipment for faults and not use and use new equipment	See notes	N/A
3	2 =moderate	Could - Cause load to fall	Use a Leveler when testing lift to en sure load lift to destination will stay the same level and load is balanced, ensuring center of gravity.	Yes	Yes	Use a leveler or a tennis ball and see if it does not fall or move.	See notes	N/A
4	2=moderate	Could - Cause load to fall	Have a supervisor review you sling configuration hook,	Yes	Yes	Yes – Supervisor check. Use different conf	See notes	N/A
5	3=High	Likely - sling line or sling to break and load to fall	Remove any hazards such as people and direct people around load area. Use a spotter to monitor lift of load, on the ground with communication such as walkie talkie to lift operator. Double check WLL calculations with Supervisor.	Yes	No	Yes	See notes	N/A
Approved	By:	TJ Crossbow		Signed:		TJ Crossbow		

WLL - Incorrect

PC 2.5

ELEMENT 2 – PREPARE FOR WORK/TASK

QUESTION 91

What should the angle between the first (bottom) and second (top) layer of pigstying be?

ELEMENT 2 - PREPARE FOR WORK/TASK

PC 2.5

QUESTION 97

You are looking at the load chart. The chart has a near t

What above line m

The numbers **above the line** tell you the structural strength of the crane. The numbers **below the line** tell you how stable the crane is.

thick black line		s	howing Rate	CRAI d Lifting Capa	NE LOAD acity (in tonne	CHART s) on Fully Ex	tended Outrigg	ers
the middle.		Radius	10.1	m Boom	18.1m	Boom	26.0m	Boom
do the numbers		(m)	Over Rear	Over Side	Over Rear	Over Side	Over Rear	Over Side
e and below the		3.0	25.00	25.00	14.00	14.00		
iean?	Structural strength	3.5	21.70	21.70	13.40	13.40		
	above line	4.0	18.50 I	18.50	12.75	12.75		
		4.5	15.50	15.50	12.15	12.15		
		5.0	12.80	12.80	11.60	11.60	7.40	7.40
		5.5	10.50	10.50	10.00	10.00	7.10	7.10
		6.0 -	→ 8.80 ← -	8.80	8.70	8.70	6.65	6.65
		6.5	7.70	7.55	7.70	7.70	6.40	6.40
		7.0	6.85	6.60	6.85	6.60	6.10	6.10
		7.5	6.20	5.70	6.20	5.70	5.75	5.75
		8.0	5.60	4.95	5.60	4.95	5.40	5.40
		8.5	5.05	4.36	5.05	4.35	5.00	4.80
		9.0			4.60	3.85	4.60	4.35
		10.0			3.90	3.10	3.90	3.50
	Instability	11.0			3.30	2.65	3.30	2.95
	below line	12.0		_0	2.80	2.25	2.80	2.50
		13.0			2.40	1.95	2.40	2.15
		14.0			2.10	1.55	2.10	1.80
1		16.0					1.55	1.30
		18.0					1.20	0.95
	and the second s	20.0					0.90	0.60
		22.0					0.70	0.40
		24.0					0.55	0.25
	T AL							
	()							
	Y							

PC 2.7

ELEMENT 2 – PREPARE FOR WORK/TASK

PC 2.8

ELEMENT 2 – PREPARE FOR WORK/TASK

QUESTION 103

You have entered all the information into the computer.

How do you make sure the computer is working properly?

Note: Check the manufacturer's instructions for testing

PC 1.7, 2.7, 2.8

ELEMENT 2 - PREPARE FOR WORK/TASK

QUESTION 104

You have done your post operational checks. You are about to lift a load.

Why should you test your communication equipment?

READING LOAD CHARTS FOR CRANES UP TO 100 TONNES

FOR CRANES UP TO 100 TONNES -

Introduction to load charts

GR-800EX RATED LIFTING CAPACITIES

Load chart

All cranes have their **own** load chart. They should be in place and readable. The load chart gives information about the load capacity of the crane in a given configuration (set up). The cranes capacity changes depending on how the crane is set up.

Configuration

The configuration of the crane includes things like:

- The outrigger set up (if applicable)
- The length and angle of the main boom
- Operating radius
- Maximum line load and winch capacity
- Fly jib and hook attachments.

Important information

Other important information may include:

- Limitations of boom angles
- Operational conditions. For example wind speed.

Crane set-up

A load chart refers to a crane that is set up:

- According to manufacturers specifications
- On firm, level ground
- In ideal weather conditions
- With outriggers/stabilisers fully extended (where applicable)
- Tyres correctly inflated and in good condition.

Read all of the information on the load chart.

EXAMPLES OF READING CRANE CHARTS

Note: The following crane chart exercises us the C1 LOAD CHART_LIEBHERR LTM1100-5.2 load chart. This is located in the 'Trainer's Resource' of the Easy Guides training material. Your trainer will provide you with this crane chart.

Mobilkran-Mobile Crane LTM 1100-5.2 Grue mobile · Autogrù Grua móvil · Мобильный кран	General Questions
Technische Daten · Technical Data Caractéristiques techniques · Dati tecnici Datos técnicos · Технические данные	a) What counterweight is fitted to the crane to allow it to have on-road axle weights of 12t?
	Answer = 7t counterweight
H.	b) What is the rated capacity of the 7-sheave hook block?
Office	Answer = 55t
10	c) What is the tare weight of the 30.2t rated capacity book block?
anny	Answer = 260kg
5	
	d)The working radii on the LTM 1055 3.2 is measured from where on crane?
AL 610000	Answer = From centre of slew
LIEBHERR	

Element 3 – Perform work / task

PC 3.2, 3.3

ELEMENT 3 – PERFORM WORK/TASK

Do the lift

This part of the book is about how to do a lift.

It covers:

- Positioning the hoist block and boom/jib
- Test lifts
- Moving and watching the load
- Safe crane operation
- Responding to unsafe situations
- Checking the planned route.

ELEMENT 3 - PERFORM WORK/TASK

Conduct a test lift

With some loads it can be difficult to establish where the load's centre of gravity is. Sometimes the only way to be sure that the load will be stable while moving is to perform a **test lift** to see if it stays stable.

Test lift

Do a test/trial lift before you use the crane to move a load. This helps you check:

ELEMENT 3 - PERFORM WORK/TASK

PC 3.6

QUESTION 181

...CONTINUED FROM PREVIOUS PAGE

You are operating a crane and:

The dogger touches the hook and jumps like they are getting a shock.

or

Your crane contacts overhead powerlines.

What must you do?

When you get to the ground, move away from the crane by **hopping** or by **shuffling** with both feet together.

Do not run or walk because the ground might be electrified.

Get to at least 8 metres away from the crane or plant you are operating..

...CONTINUES ON NEXT PAGE

8 metres

ELEMENT 3 - PERFORM WORK/TASK

PC 3.6

QUESTION 181

When you get clear of the crane, warn everyone else to stay at least 8 metres away from it.

...CONTINUED FROM PREVIOUS PAGE

You are operating a crane and:

The dogger touches the hook and jumps like they are getting a shock.

or

Your crane contacts overhead powerlines.

What must you do?

Do not touch any person getting an electric shock or touch electric lines.

...CONTINUES ON NEXT PAGE

ELEMENT 3 – PERFORM WORK/TASK

QUESTION 181

...CONTINUED FROM PREVIOUS PAGE

You are operating a crane and:

The dogger touches the hook and jumps like they are getting a shock.

or

Your crane contacts overhead powerlines.

What must you do?

Do all the incident reporting that you should. Do any first aid you need to.

Do not use the crane until it has been checked out.

IRST

ELEMENT 3 - PERFORM WORK/TASK

QUESTION 182

Something happens that can make the crane or load unsafe.

What must the operator do?

You need to:

Stop using the crane, look at what is unsafe

Try and fix the problem

Report as per site procedures.

ELEMENT 3 – PERFORM WORK/TASK

QUESTION 183

Some of the Australian standard signals used in dogging are shown here.

What does each of these signals mean?

ELEMENT 3 – PERFORM WORK/TASK

QUESTION 183

...CONTINUED FROM PREVIOUS PAGE

Some of the Australian standard signals used in dogging are shown here.

What does each of these signals mean?

ELEMENT 3 - PERFORM WORK/TASK

ELEMENT 3 - PERFORM WORK/TASK

QUESTION 184

A workmate gave you a signal and you didn't understand it.

What should you do?

Stop operating the crane and ask your workmate to repeat or explain the signal.

Also, who or what person would you follow directions from when lifting a load, either from hand, whistle or radio? You would follow directions of dogger or rigger or even another work mate. But when operating the crane you would follow the directions of the dogger or rigger.

...CONTINUES ON NEXT PAGE

PC 3.7, 3.6

ELEMENT 3 - PERFORM WORK/TASK

QUESTION 184

...CONTINUED FROM PREVIOUS PAGE

What is the role of the dogger man?

One role from many others of a dogger man is to monitor the movement of the crane and its load.

The reason why we monitor a load and its crane movement is to ensure safe operation of tasks to be performed.

What sequence of hand singles would you use to tell the crane operator to stop and make adjustments to the crane lift?

What sequence of hand singles would you use to tell the crane operator to stop and make adjustments to the crane lift?

So that, the load can be lifted up by 2 meters and swing to the right of the vehicle because a tree branch fell and caused a major hazard.

Stop

Slew right /Travel right

Lower

Luffing boom up

PC 3.8, 3.9

ELEMENT 3 - PERFORM WORK/TASK

QUESTION 185

You are releasing a heavy load from the crane hook.

How do you control boom deflection?

Lower the boom/jib slightly as the load settles on the supporting surface before lowering the hook.

- This releases some tension (force) from the slings
- This stops the boom/jib from springing upwards when it is released.

When unhooking a load, make sure controls are not active to safe guard from boom deflection and monitor crane movement for safety.

Element 4 – Pack up

PC 4.1, 4.3

ELEMENT 4 - PACK UP

Shut down and pack up

This part of the book is about how to shut down, pack up and put away equipment.

It covers:

- Stowing and securing equipment
- Using motion locks
- Shutting down the crane
- Post-operational checks.

Stow boom/jib and equipment

Stow your boom as shown in the manufacturer's instructions or the specifications.

Remove any lifting parts from the boom and securely attach them to the correct position on the vehicle.

Apply motion locks and brakes

When shutting down the crane or leaving it unattended, check that you have turned on all motion locks and brakes.

